login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 - 2*x)/(1 - 5*x - 3*x^2).
5

%I #17 Sep 08 2022 08:45:54

%S 1,3,18,99,549,3042,16857,93411,517626,2868363,15894693,88078554,

%T 488076849,2704619907,14987330082,83050510131,460214540901,

%U 2550224234898,14131764797193,78309496690659,433942777844874

%N Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 - 2*x)/(1 - 5*x - 3*x^2).

%C The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180028.

%C The sequence above corresponds to 56 red queen vectors, i.e., A[5] vector, with decimal values varying between 7 and 448. The corner and side squares lead for these vectors to A180035.

%H Vincenzo Librandi, <a href="/A180036/b180036.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5, 3).

%F G.f.: (1-2*x)/(1 - 5*x - 3*x^2).

%F a(n) = 5*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 3.

%F a(n) = ((1+16*A)*A^(-n-1) + (1+16*B)*B^(-n-1))/37 with A = (-5+sqrt(37))/6 and B = (-5-sqrt(37))/6.

%F a(n) = Sum_{k=0..n} A202395(n,k)*2^k. - _Philippe Deléham_, Dec 21 2011

%p with(LinearAlgebra): nmax:=21; m:=5; A[5]:= [0,0,0,0,0,0,1,1,1]: A:=Matrix([[0,1,1,1,1,0,1,0,1], [1,0,1,1,1,1,0,1,0], [1,1,0,0,1,1,1,0,1], [1,1,0,0,1,1,1,1,0], A[5], [0,1,1,1,1,0,0,1,1], [1,0,1,1,1,0,0,1,1], [0,1,0,1,1,1,1,0,1], [1,0,1,0,1,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);

%t LinearRecurrence[{5,3},{1,3},201] (* _Vincenzo Librandi_, Nov 15 2011 *)

%o (Magma) I:=[1,3]; [n le 2 select I[n] else 5*Self(n-1)+3*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 15 2011

%K easy,nonn

%O 0,2

%A _Johannes W. Meijer_, Aug 09 2010

%E Second formula corrected by _Vincenzo Librandi_, Nov 15 2011