login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A056520(n)+1 for n>0, a(0)=1.
5

%I #34 Jul 14 2024 20:00:40

%S 1,3,7,16,32,57,93,142,206,287,387,508,652,821,1017,1242,1498,1787,

%T 2111,2472,2872,3313,3797,4326,4902,5527,6203,6932,7716,8557,9457,

%U 10418,11442,12531,13687,14912,16208,17577,19021,20542,22142,23823,25587

%N a(n) = A056520(n)+1 for n>0, a(0)=1.

%C Original name: (1,3,5,7,9,..) = A005408 convolved with (1,0,2,3,4,..) = 1 followed by A087156.

%H Vincenzo Librandi, <a href="/A179904/b179904.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F From _Bruno Berselli_, Aug 26 2011: (Start)

%F G.f.: (1 + x)*(1 - 2*x + 3*x^2 - x^3)/(1 - x)^4.

%F a(n) = (1/6)*(2*n^3 + 3*n^2 + n + 12) for n>0, a(0)=1. (End)

%F a(n) = A153056(n) for n > 0. - _Georg Fischer_, Oct 24 2018

%e a(3) = 16 = 1 + A056520(3) = (1 + 15).

%e a(4) = 32 = (9, 7, 5, 3, 1) dot (1, 0, 2, 3, 4) = (9 + 0 + 10 + 9 + 4).

%t LinearRecurrence[{4,-6,4,-1},{1,3,7,16,32},50] (* _Harvey P. Dale_, Apr 25 2020 *)

%Y Cf. A000330, A056520, A153056, A153057, A153058.

%K nonn,easy

%O 0,2

%A _Gary W. Adamson_, Jul 31 2010

%E More terms and a(20) added by _Bruno Berselli_, Aug 26 2011