login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179657
Digital root of n-th practical number.
0
1, 2, 4, 6, 8, 3, 7, 9, 2, 6, 1, 3, 5, 9, 4, 6, 3, 9, 2, 6, 1, 3, 9, 6, 8, 3, 7, 9, 6, 1, 5, 9, 4, 3, 9, 2, 6, 5, 9, 6, 3, 7, 9, 6, 5, 9, 3, 7, 9, 2, 6, 1, 3, 9, 4, 8, 3, 9, 6, 9, 4, 8, 3, 9, 2, 6, 1, 9, 6, 3, 7, 9, 2, 6, 5, 9, 6, 3, 7, 9, 6, 1, 9, 4, 8, 9, 2, 6, 3, 5, 9, 4, 3, 9, 2, 6, 9, 8, 7, 9, 6, 1, 3, 5, 9
OFFSET
1,2
FORMULA
a(n) = A010888(A005153(n)). - Michel Marcus, Nov 12 2015
EXAMPLE
For n=11, the 11th practical number is 28. As 2+8 = 10 and 1+0 = 1, the digital root is 1.
MATHEMATICA
PracticalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, f = FactorInteger[n]; {p, e} = Transpose[f]; Do[ If[ p[[i]] > 1 + DivisorSigma[1, prod], ok = False; Break[]]; prod = prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Mod[ Select[ Range@ 500, PracticalQ], 9] /. {0 -> 9} (* Robert G. Wilson v, Aug 02 2010 *)
PROG
(PARI) isok(n) = bittest(n, 0) && return(n==1); my(P=1); n && !for(i=2, #n=factor(n)~, n[1, i]>1+(P*=sigma(n[1, i-1]^n[2, i-1])) && return);
for(n=1, 1e3, if(isok(n), print1((n-1)%9+1", "))) \\ Altug Alkan, Nov 12 2015
CROSSREFS
Sequence in context: A351330 A220102 A308080 * A239887 A354721 A355506
KEYWORD
nonn,base
AUTHOR
Jason G. Wurtzel, Jul 23 2010
EXTENSIONS
More terms from Robert G. Wilson v, Aug 02 2010
STATUS
approved