login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179551
Primes p such that p plus the sum of cubes of its digits yields a prime.
1
11, 13, 31, 73, 79, 101, 103, 109, 127, 167, 257, 277, 307, 367, 389, 419, 431, 439, 523, 587, 613, 653, 673, 677, 691, 761, 907, 947, 983, 1021, 1061, 1063, 1151, 1153, 1193, 1283, 1289, 1409, 1423, 1483, 1553, 1559, 1579, 1621, 1733, 1759, 1823, 1847, 1861
OFFSET
1,1
LINKS
EXAMPLE
a(5)=79 since 79 + (7^3 + 9^3) = 1151 is a prime.
MAPLE
filter:= proc(p) local t, r;
if not isprime(p) then return false fi;
r:= add(t^3, t=convert(p, base, 10));
isprime(p+r)
end proc:
select(filter, [seq(i, i=3..10000, 2)]); # Robert Israel, Mar 30 2021
MATHEMATICA
Select[Prime[Range[300]], PrimeQ[#+Total[IntegerDigits[#]^3]]&] (* Harvey P. Dale, Feb 13 2011 *)
PROG
(Python)
from sympy import isprime, primerange
def sumddd(n): return sum(int(d)**3 for d in str(n))
def list(nn):
for p in primerange(2, nn+1):
if isprime(p+sumddd(p)): print(p, end=", ")
list(1861) # Michael S. Branicky, Mar 30 2021
CROSSREFS
Cf. A076162.
Sequence in context: A089755 A262254 A082238 * A054262 A053649 A104151
KEYWORD
nonn,base
AUTHOR
Carmine Suriano, Jul 19 2010
STATUS
approved