login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179550
Primes p such that p plus or minus the sum of its digits squared yields a prime in both cases.
2
13, 127, 457, 1429, 1553, 1621, 2273, 2341, 2837, 4129, 4231, 4561, 4813, 5119, 5519, 5531, 6121, 6451, 6547, 8161, 8167, 8219, 8237, 8783, 8819, 8831, 8941, 9511, 10267, 10559, 11299, 11383, 12809, 13183, 15091, 15569, 16573, 17569, 17659, 18133
OFFSET
1,1
LINKS
EXAMPLE
a(5)=1553 since 1553+(1^2+5^2+5^2+3^2)=1553+60=1613 is a prime AND 1553-(1^2+5^2+5^2+3^2)=1553-60=1493 is a prime again.
MAPLE
filter:= proc(p) local t, r;
if not isprime(p) then return false fi;
r:= add(t^2, t=convert(p, base, 10));
isprime(p+r) and isprime(p-r);
end proc:
select(filter, [seq(i, i=3..20000, 2)]); # Robert Israel, Mar 30 2021
MATHEMATICA
Select[Prime[Range[2100]], AllTrue[#+{Total[IntegerDigits[#]^2], -Total[ IntegerDigits[ #]^2]}, PrimeQ]&] (* Harvey P. Dale, Aug 07 2021 *)
PROG
(PARI) sumdd(n) = {digs = digits(n, 10); return (sum(i=1, #digs, digs[i]^2)); }
lista(nn) = {forprime(p=2, nn, s = sumdd(p); if (isprime(p+s) && isprime(p-s), print1(p, ", ")); ); } \\ Michel Marcus, Jul 25 2013
(Python)
from sympy import isprime, primerange
def sumdd(n): return sum(int(d)**2 for d in str(n))
def list(nn):
for p in primerange(2, nn+1):
s = sumdd(p)
if isprime(p-s) and isprime(p+s): print(p, end=", ")
list(18133) # Michael S. Branicky, Mar 30 2021 after Michel Marcus
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Carmine Suriano, Jul 19 2010
STATUS
approved