login
A179542
Trajectory of 1 under the morphism 1->(1,2,3), 2->(1,2), 3->(1) related to the heptagon and A006356.
1
1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2
OFFSET
0,3
COMMENTS
Given M = the generating matrix for the heptagon shown in A006356:
[1,1,1; 1,1,0; 1,0,0] take powers of M, extracting top row getting:
(1,1,1), (3,2,1), (6,5,3), (14,11,6), where left and right columns (offset) =
A006356, and middle column = A006054. n-th iterate of the sequence is
composed of A006356(n) terms parsed into a frequency of 1's, 2's, and 3's
matching the 3-termed vectors with appropriate sums.
EXAMPLE
Starting with 1, the next two iterates are:
(1, 2, 3) -> (1, 2, 3, 1, 2, 1) -> (1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3).
The 3rd iterate has 14 terms composed of six 1's, five 2's, and three 3's; matching the top row of M^3 = (6, 5, 3), sum = 14 = A006356(3).
MATHEMATICA
NestList[ Flatten[ # /. {1 -> {1, 2, 3}, 2 -> {1, 2}, 3 -> 1}] &, {1}, 5] // Flatten (* Robert G. Wilson v, Jul 23 2010 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 18 2010
EXTENSIONS
More terms from Robert G. Wilson v, Jul 23 2010
STATUS
approved