The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179508 a(n) is the unique integer such that Sum_{k=0..p-1} b(k)/(-n)^k == a(n) (mod p) for any prime p not dividing n, where b(0), b(1), b(2), ... are Bell numbers given by A000110. 2
 2, 1, 2, -1, 10, -43, 266, -1853, 14834, -133495, 1334962, -14684569, 176214842, -2290792931, 32071101050, -481066515733, 7697064251746, -130850092279663, 2355301661033954, -44750731559645105, 895014631192902122, -18795307255050944539 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS On July 17, 2010 Zhi-Wei Sun conjectured that a(n) exists for every n=1,2,3,... He noted that a(1)=2 since Sum_{k=0..p-1} (-1)^k * b(k) == b(p) (mod p), and conjectured that a(2)=1, a(3)=2, a(4)=-1, a(5)=10, a(6)=-43, a(7)=266, a(8)=-1853, a(9)=14834, a(10)=-133495. It seems that (-1)^(n-1)*a(n) > 0 for all n=3,4,5,... I guess that a(2n) == (-1)^(n-1) (mod 4) and a(2n-1) == 2 (mod 4) for all n=1,2,3,... Perhaps a(2n-1) == 2 (mod 8) for every positive integer n. - Zhi-Wei Sun, Jul 18 2010 On August 5, 2010 Zhi-Wei Sun and Don Zagier proved that a(n) actually equals (-1)^(n-1)*D(n-1)+1, where D(0), D(1), D(2), ... are derangement numbers given by A000166. - Zhi-Wei Sun, Aug 07 2010 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..451 Zhi-Wei Sun, Open Conjectures on Congruences, preprint, arXiv:0911.5665 [math.NT], 2009-2010. Zhi-Wei Sun, On Apery numbers and generalized central trinomial coefficients, preprint, arXiv:1006.2776 [math.NT], 2010-2011. Zhi-Wei Sun, A conjecture on Bell numbers (a message to Number Theory List on July 17, 2010) [From Zhi-Wei Sun, Jul 18 2010] Zhi-Wei Sun and Don Zagier, On a curious property of Bell numbers, Bulletin of the Australian Mathematical Society, Volume 84, Issue 1, August 2011. [Zhi-Wei Sun, Aug 07 2010] FORMULA a(n) = a(n-1)*(1-n)+n+1. - Jon Maiga, Jul 10 2021 MAPLE A179508:= n-> (-1)^n*(n!*add((-1)^(k)/k!, k=0..n))+1 : seq(A179508(n), n=0..21); # second program: G(x):=(2-x)*exp(-x)/(1-x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1], x) od: x:=0; seq((-1)^n*f[n], n=0..21); # Mélika Tebni, Jul 10 2021 MATHEMATICA a[1] = 2; a[n_]:=a[n]=a[n-1]*(1-n)+n+1; Array[a, 30] (* Jon Maiga, Jul 10 2021 *) CROSSREFS Cf. A000110, A000166. Sequence in context: A248516 A097749 A126906 * A134304 A211096 A134569 Adjacent sequences:  A179505 A179506 A179507 * A179509 A179510 A179511 KEYWORD sign,changed AUTHOR Zhi-Wei Sun, Jul 17 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 28 23:26 EDT 2021. Contains 346340 sequences. (Running on oeis4.)