login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179272
Sharp upper bound on Rosgen overlap number n-vertex graph with n >= 14, formula abused here for nonnegative integers.
2
-1, -2, -1, -1, 1, 2, 5, 7, 11, 14, 19, 23, 29, 34, 41, 47, 55, 62, 71, 79, 89, 98, 109, 119, 131, 142, 155, 167, 181, 194, 209, 223, 239, 254, 271, 287, 305, 322, 341, 359, 379, 398, 419, 439, 461, 482, 505, 527, 551, 574, 599, 623, 649, 674, 701, 727, 755, 782
OFFSET
0,2
LINKS
Daniel W. Cranston, Nitish Korula, Timothy D. LeSaulnier, Kevin Milans, Christopher Stocker, Jennifer Vandenbussche, Douglas B. West, Overlap Number of Graphs, arXiv:1007.0804 [math.CO], Jul 06 2010.
FORMULA
a(n) = floor(n^2/4 - n/2 - 1).
a(n) = +2*a(n-1) -2*a(n-3) +a(n-4). G.f.: ( 1-3*x^2+x^3 ) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Jul 08 2010
a(n) = n - 1 + ceiling((1/4)*n^2), n>=1. - Clark Kimberling, Jan 07 2011
From Ilya Gutkovskiy, Jun 24 2016: (Start)
E.g.f.: (3*exp(-x) - (11 + 2*x - 2*x^2)*exp(x))/8.
a(n) = (2*n^2 - 4*n + 3*(-1)^n - 11)/8. (End)
b(n) = a(n-1) = floor ((n^2)/4 - 5/4) defines an even function for the sequence. - Hartmut F. W. Hoft, Nov 02 2016
EXAMPLE
a(0) = floor(((0^2)/4) - (0/2) - 1) = floor(0 - 0 - 1) = -1.
a(1) = floor(((1^2)/4) - (1/2) - 1) = floor((1/4) - (1/2) - 1) = floor(-5/4) = -2.
a(2) = floor(((2^2)/4) - (2/2) - 1) = floor(1 - 1 - 1) = -1.
a(3) = floor(((3^2)/4) - (3/2) - 1) = floor(9/4 - 3/2 - 1) = floor(-1/4) = -1.
a(4) = floor(((4^2)/4) - (4/2) - 1) = floor(16/4 - 4/2 - 1) = floor(1) = 1.
a(5) = floor(((5^2)/4) - (5/2) - 1) = floor(16/4 - 5/2 - 1) = floor(11/4) = 2.
a(6) = floor(((6^2)/4) - (6/2) - 1) = floor(36/4 - 6/2 - 1) = floor(5) = 5.
MATHEMATICA
Table[Ceiling[n/2] (2 + Ceiling[n/2] - Mod[n, 2]) - 1, {n, -3, 54}]; (* Fred Daniel Kline, Jun 24 2016 *)
CoefficientList[Series[(1 - 3 x^2 + x^3) / ((1 + x) (x - 1)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Nov 07 2016 *)
CROSSREFS
Sequence in context: A336479 A221131 A126886 * A264753 A165680 A380162
KEYWORD
sign,easy
AUTHOR
Jonathan Vos Post, Jul 07 2010
EXTENSIONS
a(1) corrected by R. J. Mathar, Jul 08 2010
STATUS
approved