Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 07 2022 02:06:03
%S 0,2,5,1,14,20,1,35,44,2,65,77,10,104,119,5,152,170,7,209,230,28,275,
%T 299,4,350,377,5,434,464,55,527,560,22,629,665,26,740,779,91,860,902,
%U 35,989,1034,40,1127,1175,136,1274,1325,17
%N a(n) = A144448(n+1)/8.
%C Differs from A178971 for indices n > 23.
%H G. C. Greubel, <a href="/A178978/b178978.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_81">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
%F Trisections:
%F a(3*n) = A145911(n);
%F a(3*n+1) = A145910(n);
%F a(3*n+2) = A178977(n).
%F a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81). - _G. C. Greubel_, Mar 06 2022
%p A061039 := proc(n) numer(1/9-1/n^2) ; end proc:
%p A144448 := proc(n) A061039(1+2*n) ; end proc:
%p A178978 := proc(n) A144448(n+1)/8 ; end proc:
%p seq(A178978(n),n=0..80) ; # _R. J. Mathar_, Jan 06 2011
%t Table[Numerator[1/9 -1/(2*n+3)^2]/8, {n, 0, 75}] (* _G. C. Greubel_, Mar 06 2022 *)
%o (Sage) [numerator(1/9 -1/(2*n+3)^2)/8 for n in (0..75)] # _G. C. Greubel_, Mar 06 2022
%Y Cf. A061039, A145910, A145911, A178971, A178977, A178978, A144448.
%K nonn,easy,less
%O 0,2
%A _Paul Curtz_, Jan 02 2011