login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A178887
Total of n-colorings of parts of all integer partitions of n.
3
1, 1, 4, 15, 76, 405, 2616, 18613, 151432, 1367649, 13720060, 151005261, 1812987804, 23570657773, 330012270784, 4950230221875, 79204352557936, 1346475340841553, 24236578276301844, 460495032000171373, 9209901462655990180, 193407932383031348241, 4254974546342806648384
OFFSET
0,3
COMMENTS
An integer partition of n with k parts can have its parts colored in n!/(n-k)! ways. a(n) is the sum of all these possibilities over all integer partitions of n. - Olivier Gérard, May 08 2012
Table A178888 has A000041 entries per row.
LINKS
EXAMPLE
A178888 begins
1
2 2
3 6 6
4 12 12 24 24
...
therefore A178887 begins 1 4 15 76 405 ...
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
p!/(p-n)!, b(n, i-1, p)+p*b(n-i, min(i, n-i), p-1))
end:
a:= n-> b(n$3):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 21 2019
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, p!/(p - n)!, b[n, i - 1, p] + p b[n - i, Min[i, n - i], p - 1]];
a[n_] := b[n, n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
CROSSREFS
Row sums of the irregular table A178888.
Sequence in context: A198057 A263004 A002750 * A002467 A332652 A243327
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Jun 21 2010
EXTENSIONS
More terms and more direct definition by Olivier Gérard, May 08 2012
a(0)=1 prepended by Alois P. Heinz, Jan 21 2019
STATUS
approved