login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178840 Decimal expansion of the factorial of Golden Ratio. 3
1, 4, 4, 9, 2, 2, 9, 6, 0, 2, 2, 6, 9, 8, 9, 6, 6, 0, 0, 3, 7, 7, 8, 7, 9, 7, 9, 0, 6, 2, 9, 7, 6, 8, 3, 3, 7, 0, 8, 4, 0, 8, 9, 8, 9, 0, 9, 6, 6, 6, 7, 6, 0, 7, 5, 3, 3, 7, 0, 2, 3, 8, 5, 8, 1, 3, 8, 9, 1, 1, 8, 0, 7, 9, 4, 2, 7, 9, 7, 4, 7, 1, 9, 1, 2, 9, 4, 0, 4, 9, 1, 6, 9, 6, 5, 7, 0, 3, 1, 4, 2, 8, 5, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

Factorial of Golden Ratio = Gamma(1 + phi) = Gamma((3 + sqrt(5))/2). - Bernard Schott, Jan 21 2019

Equals Gamma((sqrt(5) - 1)/2). - Vaclav Kotesovec, Jan 21 2019

EXAMPLE

1.44922960226989660037787979062976833708408989096667607533702385813891...

MAPLE

evalf(GAMMA(1+evalf((1+sqrt(5))/2, 100)), 106); # Golden ratio

MATHEMATICA

RealDigits[Gamma[(Sqrt[5] - 1)/2], 10, 120][[1]] (* Vaclav Kotesovec, Jan 20 2019 *)

PROG

(PARI) default(realprecision, 100); gamma((sqrt(5)-1)/2) \\ G. C. Greubel, Jan 21 2019

(Magma) SetDefaultRealField(RealField(100)); Gamma((Sqrt(5)-1)/2); // G. C. Greubel, Jan 21 2019

(Sage) numerical_approx(gamma(1/golden_ratio), digits=100) # G. C. Greubel, Jan 21 2019

CROSSREFS

Cf. A111293, A178394, A178839.

Cf. A001622 (golden ratio).

Sequence in context: A143183 A165441 A204997 * A246668 A021073 A021961

Adjacent sequences:  A178837 A178838 A178839 * A178841 A178842 A178843

KEYWORD

easy,nonn,cons

AUTHOR

Paolo P. Lava and Giorgio Balzarotti, Jun 17 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 3 22:17 EDT 2022. Contains 357237 sequences. (Running on oeis4.)