login
A178663
a(1)=1. For n>1, a(n) is the smallest number greater than a(n-1) such that exactly one of n and a(n) is prime and the other is composite.
0
1, 4, 6, 7, 8, 11, 12, 13, 17, 19, 20, 23, 24, 29, 31, 37, 38, 41, 42, 43, 47, 53, 54, 59, 61, 67, 71, 73, 74, 79, 80, 83, 89, 97, 101, 103, 104, 107, 109, 113, 114, 127, 128, 131, 137, 139, 140, 149, 151, 157, 163, 167, 168, 173, 179, 181, 191, 193, 194, 197, 198, 199
OFFSET
1,2
COMMENTS
Equals A163578 from the second term on. - R. J. Mathar, Jun 07 2010
EXAMPLE
a(6) cannot equal 9 because both 6 and 9 are composite.
MATHEMATICA
a[n_] := a[n] = Block[{k = a[n - 1]}, If[ PrimeQ@n, k++; While[PrimeQ@k, k++ ], k = NextPrime@k]; k]; a[1] = 1; Array[a, 62] (* Robert G. Wilson v, Jun 04 2010 *)
CROSSREFS
Sequence in context: A139490 A030375 A081712 * A084395 A047291 A100349
KEYWORD
nonn
AUTHOR
J. Lowell, Jun 01 2010
EXTENSIONS
a(9) onwards from Robert G. Wilson v, Jun 04 2010
STATUS
approved