OFFSET
1,2
FORMULA
prime(2*a(n)) mod prime(a(n)) = prime(2*a(n)+2) mod prime(a(n)+1).
EXAMPLE
a(2)=8 because prime(2*8) mod prime(8) = prime(2*8+2) mod prime(8+1) = 15.
MAPLE
A178180:=n->`if`((ithprime(2*n) mod ithprime(n)) = (ithprime(2*n+2) mod ithprime(n+1)), n, NULL): seq(A178180(n), n=1..10^3); # Wesley Ivan Hurt, Sep 14 2014
MATHEMATICA
Select[Range[800], Mod[Prime[2#], Prime[#]]==Mod[Prime[2#+2], Prime[#+1]]&] (* Harvey P. Dale, May 28 2019 *)
PROG
(PARI) s=[]; for(n=1, 1000, if(prime(2*n)%prime(n) == prime(2*n+2)%prime(n+1), s=concat(s, n))); s \\ Colin Barker, Jun 27 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Dec 22 2010
EXTENSIONS
Corrected by R. J. Mathar, Dec 22 2010
More terms from Colin Barker, Jun 27 2014
STATUS
approved