login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178150
Primes p with digital sum dividing p+1.
1
11, 19, 31, 71, 79, 101, 103, 109, 167, 211, 223, 263, 293, 337, 367, 379, 419, 431, 461, 479, 503, 571, 601, 659, 769, 839, 967, 1009, 1039, 1049, 1087, 1151, 1223, 1231, 1427, 1451, 1511, 1553, 1559, 1663, 1699, 1741, 1747, 1759, 1931, 1951, 2011, 2089
OFFSET
1,1
COMMENTS
Is the digit sum of each term even?
LINKS
EXAMPLE
223 has digit sum 7, which divides 224. - D. S. McNeil, May 23 2010
MAPLE
read(transforms): A178150 := proc(n) option remember: local p: if(n=1)then return 11: fi: p:=procname(n-1): do p:=nextprime(p): if((p+1) mod digsum(p) = 0)then return p: fi: od: end: seq(A178150(n), n=1..68); # Nathaniel Johnston, May 28 2011
MATHEMATICA
Select[Prime[Range[400]], Mod[# + 1, Total[IntegerDigits[#]]] == 0 &] (* Vincenzo Librandi, Dec 21 2018 *)
PROG
(Magma) [n: n in PrimesUpTo(3000)|IsIntegral((n+1)/&+Intseq(n))]; // Marius A. Burtea, Dec 17 2018
(PARI) is(n) = isprime(n) && !((n+1) % vecsum(digits(n))) \\ David A. Corneth, Dec 18 2018
CROSSREFS
Subsequence of primes of A144980.
Sequence in context: A272550 A122869 A106535 * A214784 A205798 A233388
KEYWORD
nonn,easy,base
AUTHOR
Giovanni Teofilatto, May 21 2010
EXTENSIONS
Extended by D. S. McNeil, May 23 2010
STATUS
approved