login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-1)-8*a(n-2)-9 for n > 3; a(0)=775, a(1)=8919, a(2)=49581, a(3)=197469.
5

%I #11 Aug 03 2023 10:23:09

%S 775,8919,49581,197469,788157,3149181,12589821,50345469,201354237,

%T 805361661,3221336061,12885123069,51540049917,206159314941,

%U 824635490301,3298538422269,13194146611197,52776572289021,211106260844541

%N a(n) = 6*a(n-1)-8*a(n-2)-9 for n > 3; a(0)=775, a(1)=8919, a(2)=49581, a(3)=197469.

%C Related to Reverse and Add trajectory of 775 in base 2: a(n) = A077077(4*n), i.e. first quadrisection of A077077.

%H Vincenzo Librandi, <a href="/A177843/b177843.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7, -14, 8).

%F a(n) = 3*4^(n+5)+27*2^(n+2)-3 for n > 1.

%F G.f.: (775+3494*x-2002*x^2-30932*x^3+28656*x^4) / ((1-x)*(1-2*x)*(1-4*x)).

%F G.f. for the sequence starting at a(2): 9*x^2*(5509-16622*x+11112*x^2) / ((1-x)*(1-2*x)*(1-4*x)).

%t CoefficientList[Series[(775 + 3494 x - 2002 x^2 - 30932 x^3 + 28656 x^4)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Sep 24 2013 *)

%t LinearRecurrence[{7,-14,8},{775,8919,49581,197469,788157},20] (* _Harvey P. Dale_, Aug 03 2023 *)

%o (PARI) {m=19; v=concat([775, 8919, 49581, 197469], vector(m-4)); for(n=5, m, v[n]=6*v[n-1]-8*v[n-2]-9); v}

%o (Magma) [775, 8919] cat [3*4^(n+5)+27*2^(n+2)-3: n in [2..25]]; // _Vincenzo Librandi_, Sep 24 2013

%Y Cf. A077077 (Reverse and Add trajectory of 775 in base 2), A177844, A177845, A177846.

%K nonn,easy

%O 0,1

%A _Klaus Brockhaus_, May 14 2010