login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^2 - 13 and k^2 + 13 are primes.
5

%I #23 Nov 25 2024 11:59:59

%S 4,12,18,72,84,114,198,354,378,588,612,618,864,912,948,1032,1068,1134,

%T 1320,1410,1428,1452,1500,1830,1956,2046,2058,2172,2298,2448,2634,

%U 2748,2844,2856,3192,3246,3390,3474,3846,3906,4092,4182,4506,4842,4884,4890

%N Numbers k such that k^2 - 13 and k^2 + 13 are primes.

%D J. Matousek and J. Nesetril, Diskrete Mathematik: eine Entdeckungsreise, Springer-Lehrbuch, 2. Aufl., Berlin, 2007

%H Zak Seidov, <a href="/A177833/b177833.txt">Table of n, a(n) for n = 1..3000</a>

%e 4^2 - 13 = 3 = prime(2), 4^2 + 13 = 29 = prime(10).

%e 12^2 - 13 = 131 = prime(32), 12^2 + 13 = 157 = prime(37).

%e 948^2 - 13 = 898691 = prime(71194), 948^2 + 13 = prime(71195), first case that they are consecutive primes.

%p with(numtheory): A248785:=n->`if`(isprime(n^2-13) and isprime(n^2+13), n, NULL): seq(A248785(n), n=1..10^4); # _Wesley Ivan Hurt_, Oct 13 2014

%t Select[Range[2,5000,2],AllTrue[#^2+{13,-13},PrimeQ]&] (* _Harvey P. Dale_, May 28 2024 *)

%o (Magma) [n: n in [4..1000]| IsPrime(n^2-13) and IsPrime(n^2+13)]; // _Vincenzo Librandi_, Nov 30 2010

%Y Cf. A138375, A154648, A176969, A176978, A248785.

%K nonn

%O 1,1

%A Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 14 2010

%E More terms from _Vincenzo Librandi_, May 16 2010

%E Name edited by _Michel Marcus_, Nov 25 2024