login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177833
Numbers k such that k^2 - 13 and k^2 + 13 are primes.
5
4, 12, 18, 72, 84, 114, 198, 354, 378, 588, 612, 618, 864, 912, 948, 1032, 1068, 1134, 1320, 1410, 1428, 1452, 1500, 1830, 1956, 2046, 2058, 2172, 2298, 2448, 2634, 2748, 2844, 2856, 3192, 3246, 3390, 3474, 3846, 3906, 4092, 4182, 4506, 4842, 4884, 4890
OFFSET
1,1
REFERENCES
J. Matousek and J. Nesetril, Diskrete Mathematik: eine Entdeckungsreise, Springer-Lehrbuch, 2. Aufl., Berlin, 2007
EXAMPLE
4^2 - 13 = 3 = prime(2), 4^2 + 13 = 29 = prime(10).
12^2 - 13 = 131 = prime(32), 12^2 + 13 = 157 = prime(37).
948^2 - 13 = 898691 = prime(71194), 948^2 + 13 = prime(71195), first case that they are consecutive primes.
MAPLE
with(numtheory): A248785:=n->`if`(isprime(n^2-13) and isprime(n^2+13), n, NULL): seq(A248785(n), n=1..10^4); # Wesley Ivan Hurt, Oct 13 2014
MATHEMATICA
Select[Range[2, 5000, 2], AllTrue[#^2+{13, -13}, PrimeQ]&] (* Harvey P. Dale, May 28 2024 *)
PROG
(Magma) [n: n in [4..1000]| IsPrime(n^2-13) and IsPrime(n^2+13)]; // Vincenzo Librandi, Nov 30 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 14 2010
EXTENSIONS
More terms from Vincenzo Librandi, May 16 2010
Name edited by Michel Marcus, Nov 25 2024
STATUS
approved