Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Apr 10 2019 03:18:26
%S 1,1,4,13,35,87,217,539,1291,2999,6880,15595,34738,76202,165282,
%T 354655,752546,1580514,3289337,6787085,13887937,28195434,56824772,
%U 113729640,226104615,446665922,877063515,1712252521,3324245063,6419561961
%N G.f.: exp( Integral (theta_3(x)^8-1)/(16x) dx ), where theta_3(x) = 1 + Sum_{n>=1} 2*x^(n^2) is a Jacobi theta function.
%C Compare to g.f. of partitions in which no parts are multiples of 4:
%C g.f. of A001935 = exp( Integral (theta_3(x)^4-1)/(8x) dx ).
%H Seiichi Manyama, <a href="/A177155/b177155.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f.: exp( Sum_{n>=1} A008457(n)*x^n/n ) where A008457(n) = Sum_{d|n} (-1)^(n-d)*d^3.
%F a(n) ~ exp(2*Pi*n^(3/4)/3 - Zeta(3)/Pi^2) / (4*n^(5/8)). - _Vaclav Kotesovec_, Apr 10 2019
%e G.f.: A(x) = 1 + x + 4*x^2 + 13*x^3 + 35*x^4 + 87*x^5 +...
%e log(A(x)) = x + 7*x^2/2 + 28*x^3/3 + 71*x^4/4 + 126*x^5/5 +...+ A008457(n)*x^n/n +...
%t nmax = 40; Abs[CoefficientList[Series[Product[1/(1 - x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Apr 10 2019 *)
%t nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k - 1))^((2*k - 1)^2)/(1 - x^(2*k))^(4*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 10 2019 *)
%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n, sumdiv(m,d,(-1)^(m-d)*d^3)*x^m/m)+x*O(x^n)),n)}
%o (PARI) {a(n)=local(theta3=1+sum(m=1,sqrtint(2*n+2),2*x^(m^2)+x*O(x^n)));polcoeff(exp(intformal((theta3^8-1)/(16*x))),n)}
%Y Cf. A138503, A008457, A001935, A000143, A307462.
%K nonn
%O 0,3
%A _Paul D. Hanna_, May 03 2010, May 08 2010