login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177155
G.f.: exp( Integral (theta_3(x)^8-1)/(16x) dx ), where theta_3(x) = 1 + Sum_{n>=1} 2*x^(n^2) is a Jacobi theta function.
3
1, 1, 4, 13, 35, 87, 217, 539, 1291, 2999, 6880, 15595, 34738, 76202, 165282, 354655, 752546, 1580514, 3289337, 6787085, 13887937, 28195434, 56824772, 113729640, 226104615, 446665922, 877063515, 1712252521, 3324245063, 6419561961
OFFSET
0,3
COMMENTS
Compare to g.f. of partitions in which no parts are multiples of 4:
g.f. of A001935 = exp( Integral (theta_3(x)^4-1)/(8x) dx ).
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} A008457(n)*x^n/n ) where A008457(n) = Sum_{d|n} (-1)^(n-d)*d^3.
a(n) ~ exp(2*Pi*n^(3/4)/3 - Zeta(3)/Pi^2) / (4*n^(5/8)). - Vaclav Kotesovec, Apr 10 2019
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 13*x^3 + 35*x^4 + 87*x^5 +...
log(A(x)) = x + 7*x^2/2 + 28*x^3/3 + 71*x^4/4 + 126*x^5/5 +...+ A008457(n)*x^n/n +...
MATHEMATICA
nmax = 40; Abs[CoefficientList[Series[Product[1/(1 - x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Apr 10 2019 *)
nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k - 1))^((2*k - 1)^2)/(1 - x^(2*k))^(4*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2019 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sumdiv(m, d, (-1)^(m-d)*d^3)*x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=local(theta3=1+sum(m=1, sqrtint(2*n+2), 2*x^(m^2)+x*O(x^n))); polcoeff(exp(intformal((theta3^8-1)/(16*x))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 03 2010, May 08 2010
STATUS
approved