The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177049 Numerator of (3n+1)*(3n+2)/4. 1
1, 5, 14, 55, 91, 68, 95, 253, 325, 203, 248, 595, 703, 410, 473, 1081, 1225, 689, 770, 1711, 1891, 1040, 1139, 2485, 2701, 1463, 1580, 3403, 3655, 1958, 2093, 4465, 4753, 2525, 2678, 5671, 5995, 3164, 3335, 7021, 7381, 3875, 4064, 8515, 8911 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A trisection of A064038.
LINKS
FORMULA
Conjecture: a(n)= +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9) with g.f. -(x^2+4*x+1)*(x^6-2*x^5+12*x^4-13*x^3+12*x^2-2*x+1) ) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Dec 12 2010
The conjecture is correct. - Charles R Greathouse IV, Feb 08 2012
a(n) ~ -27/8*n^2 - 27/8*n. - Ralf Stephan, Jun 16 2014
Sum_{n>=0} 1/a(n) = (4/(3*sqrt(3)) - 1/3)*Pi. - Amiram Eldar, Aug 13 2022
MATHEMATICA
Table[Numerator[(3 n + 1) (3 n + 2)/4], {n, 0, 50}] (* Wesley Ivan Hurt, Jun 14 2014 *)
LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {1, 5, 14, 55, 91, 68, 95, 253, 325}, 50] (* Harvey P. Dale, Jan 18 2020 *)
CROSSREFS
Sequence in context: A073541 A268887 A055488 * A127922 A262247 A279511
KEYWORD
nonn,frac,less,easy
AUTHOR
Paul Curtz, Dec 09 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 05:33 EDT 2024. Contains 372921 sequences. (Running on oeis4.)