login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176981
Expansion of 1+(1-2*x)/(-1+2*x+x^2).
4
1, 0, -1, -2, -5, -12, -29, -70, -169, -408, -985, -2378, -5741, -13860, -33461, -80782, -195025, -470832, -1136689, -2744210, -6625109, -15994428, -38613965, -93222358, -225058681, -543339720, -1311738121, -3166815962, -7645370045
OFFSET
0,4
COMMENTS
It is essentially A000129, A077985 and A069306 except for signs and offsets.
a(n)=a(n - 1) - sqrt(2*a(n - 1)^2 + (-1)^n) = a(n-1)*(1-sqrt(2-(-1)^n/a(n-1)^2)) for n>0.
So in the limit of n->infinity, a(n+1)/a(n)= 1-Sqrt(2).
This matches the following formula in A000045:
Fibonacci(n) = Fibonacci(n - 1)*(1 + sqrt( 5+4*(-1)^(n-1)/Fibonacci(n-1)^2) )/2.
FORMULA
a(0)=1, a(1)=0, a(2)=-1, a(n)=2*a(n-1)+a(n-2) [From Harvey P. Dale, Dec 24 2011]
G.f.: 1 / (1 + x^2 / (1 - 2*x / (1 - x / (1 + x)))). - Michael Somos, Jan 03 2013
G.f.: 1 - Q(0)*x^2/2 , where Q(k) = 1 + 1/(1 - x*(4*k+2 + x)/( x*(4*k+4 + x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
EXAMPLE
1 - x^2 - 2*x^3 - 5*x^4 - 12*x^5 - 29*x^6 - 70*x^7 - 169*x^8 - 408*x^9 - 985*x^10 + ...
MATHEMATICA
a[0] = 1; a[n_] := a[n] = a[n - 1] - Sqrt[2*a[n - 1]^2 + (-1)^n]; Table[a[n], {n, 0, 30}]
Join[{1}, LinearRecurrence[{2, 1}, {0, -1}, 30]] (* or *) Join[{1}, Rest[ CoefficientList[Series[1 + (1 - 2 x)/(-1 + 2 x + x^2), {x, 0, 30}] , x]]] (* Harvey P. Dale, Dec 24 2011 *)
CROSSREFS
Cf. A000129.
Sequence in context: A130009 A324979 A048624 * A215936 A000129 A077985
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Apr 30 2010
STATUS
approved