login
A176816
The number of steps to reach 0 under the map x -> x-tau(sigma(x)), starting at n.
1
1, 1, 1, 2, 2, 1, 2, 3, 3, 3, 3, 2, 4, 2, 3, 3, 4, 3, 5, 3, 4, 5, 4, 3, 5, 4, 6, 4, 5, 4, 6, 5, 5, 5, 6, 6, 6, 5, 7, 5, 6, 5, 7, 6, 7, 6, 7, 6, 8, 7, 8, 7, 8, 6, 8, 6, 8, 7, 8, 7, 9, 8, 9, 9, 9, 9, 10, 7, 9, 9, 9, 10, 10, 10, 10, 10, 10, 9, 10, 11, 10, 10, 10, 11, 11, 11, 10, 10, 11, 10, 11, 11, 12, 11
OFFSET
1,4
EXAMPLE
a(19)=5 because
f(19) = 19 - tau(sigma(19)) = 19 - tau(20) = 19 - 6 = 13;
f(13) = 13 - tau(sigma(13)) = 13 - tau(14) = 13 - 4 = 9;
f(9) = 9 - tau(sigma(9)) = 9 - tau(13) = 9 - 2 = 7;
f(7) = 7- tau(sigma(7)) = 7 - tau(8) = 7 - 4 = 3;
f(3) = 3- tau(sigma(3)) = 3 - tau(4) = 3 - 3 = 0;
MAPLE
A062068 := proc(n)
numtheory[tau](numtheory[sigma](n)) ;
end proc:
A176816 := proc(n)
a := 0 ;
x := n ;
while x <> 0 do
x := x-A062068(x) ;
a := a+1 ;
end do:
a ;
end proc: # R. J. Mathar, Oct 11 2011
MATHEMATICA
f[n_] := If[n == 0, 0, n - DivisorSigma[0, DivisorSigma[1, n]]];
a[n_] := Length[FixedPointList[f, n]] - 2;
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Apr 09 2024 *)
CROSSREFS
Cf. A062068.
Sequence in context: A165927 A127830 A371275 * A053284 A050371 A172313
KEYWORD
nonn
AUTHOR
Michel Lagneau, Apr 26 2010
STATUS
approved