OFFSET
0,1
COMMENTS
We search for the prime such that the first prime (=2) concatenated with n zeros and concatenated with that prime is again a prime number.
If p = prime(i) is a d(i)-digit prime: q = 2 * 10^(n+d(i)) + p has to be prime.
Necessarily prime(i) is congruent to 2 (mod 3).
It is conjectured that prime(i) = 3 occurs infinitely often: at n= 0, 2, 4, 5, 6, 11, 15, 16, 21, 23, 34, 114, 119,...
REFERENCES
E. I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig/Jena/ Berlin 1982
EXAMPLE
n = 0: 2//3 = 23 = prime(9), 3 = prime(2) is first term
n = 1: 2//0//11 = 2011 = prime(305), 11 = prime(5) is 2nd term
n = 2: 2//00//3 = 2003 = prime(304), 3 = prime(2) is 3rd term
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 26 2010
EXTENSIONS
Offset corrected and sequence extended by R. J. Mathar, Apr 28 2010
STATUS
approved