OFFSET
1,2
COMMENTS
For m>1, is the number of m-digit terms in the sequence always Int(m/2)?
For 4<=m<=10, the last m-digit term consists of m-1 1's and a single 2 located at the first digit position to the right of the middle, i.e., 1121, 11121, 111211, 1111211, 11112111, 111112111, 1111121111. Does this pattern hold for all m>3?
Is there an easy way to extend the sequence indefinitely?
EXAMPLE
Let s(k) be the string of digits obtained by concatenating all integers from 1 to k. Then a(3)=121 because the substring 121 appears exactly 3 times in s(121)=123..1213..112113..119120121, and there is no smaller number having this property.
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Jon E. Schoenfield, Apr 25 2010
STATUS
approved