login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176651
Numbers k such that both semiprime(k)/prime(j+1) and semiprime(k+1)/prime(j) are prime for some j.
0
3, 5, 6, 7, 10, 11, 15, 19, 20, 23, 24, 32, 46, 57, 63, 65, 69, 77, 85, 86, 98, 99, 108, 119, 123, 127, 130, 131, 132, 140, 150, 154, 161, 166, 167, 193, 205, 217, 233, 237, 264, 276, 280, 303, 307, 326, 331, 332, 339, 343, 362, 368, 369, 380, 382, 385, 386, 415
OFFSET
1,1
EXAMPLE
3 is a term because semiprime(3)/prime(1+1) = 6/3 = 2 (prime) and semiprime(3+1)/prime(1) = 10/2 = 5 (prime);
5 is a term because semiprime(5)/prime(3+1) = 14/7 = 2 (prime) and semiprime(5+1)/prime(3) = 15/5 = 3 (prime).
MAPLE
isA176651 := proc(n) pfsn := convert(numtheory[factorset]( A001358(n) ), list) ; pfsn1 := convert(numtheory[factorset]( A001358(n+1) ), list) ; op(1, pfsn) = nextprime( op(1, pfsn1)) or op(1, pfsn) = nextprime( op(-1, pfsn1)) or op(-1, pfsn) = nextprime( op(1, pfsn1)) or op(-1, pfsn) = nextprime( op(-1, pfsn1)) ; end proc: for n from 1 to 600 do if isA176651(n) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Apr 26 2010
CROSSREFS
Sequence in context: A157201 A067351 A067350 * A359879 A028762 A047328
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected (6 inserted) and extended beyond 132 by R. J. Mathar, Apr 26 2010
STATUS
approved