|
|
A176321
|
|
Decimal expansion of (35 + sqrt(1365))/14.
|
|
2
|
|
|
5, 1, 3, 8, 9, 9, 3, 3, 1, 4, 5, 5, 8, 7, 3, 7, 9, 9, 9, 4, 0, 2, 5, 4, 3, 6, 8, 5, 6, 9, 9, 7, 9, 5, 8, 6, 1, 1, 7, 9, 7, 1, 2, 4, 4, 4, 5, 1, 2, 2, 5, 4, 1, 9, 6, 1, 7, 0, 7, 6, 0, 1, 3, 4, 8, 9, 2, 3, 3, 2, 9, 0, 4, 8, 0, 3, 6, 8, 5, 3, 3, 5, 8, 6, 3, 5, 9, 3, 1, 4, 7, 1, 8, 1, 7, 6, 0, 9, 2, 1, 7, 0, 0, 8, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Continued fraction expansion of (35+sqrt(1365))/14 is A010718.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
EXAMPLE
|
5.13899331455873799940...
|
|
MAPLE
|
evalf( (35+sqrt(1365))/14, 120); # G. C. Greubel, Nov 26 2019
|
|
MATHEMATICA
|
RealDigits[(35 + Sqrt[1365])/14, 10, 100][[1]] (* Vincenzo Librandi, Sep 24 2013 *)
|
|
PROG
|
(PARI) default(realprecision, 120); (35+sqrt(1365))/14 \\ G. C. Greubel, Nov 26 2019
(MAGMA) SetDefaultRealField(RealField(120)); (35+Sqrt(1365))/14; // G. C. Greubel, Nov 26 2019
(Sage) numerical_approx((35+sqrt(1365))/14, digits=120) # G. C. Greubel, Nov 26 2019
|
|
CROSSREFS
|
Cf. A176322 (decimal expansion of sqrt(1365)), A010718 (repeat 5, 7).
Sequence in context: A225984 A074048 A244350 * A248130 A134894 A143700
Adjacent sequences: A176318 A176319 A176320 * A176322 A176323 A176324
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
Klaus Brockhaus, Apr 15 2010
|
|
STATUS
|
approved
|
|
|
|