|
|
A176073
|
|
Semiprimes of the form 3^k + 2^k + k + 1.
|
|
1
|
|
|
39, 2323, 6826, 179207, 14381691, 129271253, 617675543767627, 5559069156490149, 450284043329950873, 174449211045148976090134531, 5474401089420370497804607762216590113
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
39 = 3*13 = 3^3 + 2^3 + 3 + 1.
|
|
MATHEMATICA
|
f[n_] := Last/@FactorInteger[n] == {1, 1}; Select[Array[3^# + 2^# + # + 1&, 90], f[#] &]
Select[Table[3^n + 2^n + n + 1, {n, 130}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 21 2012 *)
|
|
PROG
|
(Magma) IsSemiprime:=func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [2..130] | IsSemiprime(s) where s is 3^n + 2^n + n + 1]; // Vincenzo Librandi, Sep 21 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|