login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175972
Primes p such that each of the decimal numbers p^k for k=1..6 has exactly two 1s.
1
14591, 112223, 131939, 170123, 246511, 786151, 1140257, 1188457, 1189907, 1215047, 1280179, 1462319, 1518977, 1701289, 1731929, 1815899, 2117237, 3031163, 3119797, 3151469, 5244511, 5481713, 6141757, 7413331, 8174401, 8180189, 8181269, 9116957, 9253511, 9701891
OFFSET
1,1
COMMENTS
Subsequence of A175964.
EXAMPLE
14591^k with k=1..6: 14591, 212897281, 3106384227071, 45325252257192961, 661340755684702493951, 9649622966195494089239041
MATHEMATICA
Select[Prime[Range[380000]], Union[DigitCount[#^Range[6], 10, 1]]=={2}&] (* Harvey P. Dale, Aug 12 2020 *)
PROG
(Python)
from somewhere import primegen
for p in primegen():
if all(str(p**k).count('1') == 2 for k in range(1, 7)):
print(p) # Lucas A. Brown, Mar 23 2024
CROSSREFS
Cf. A175964.
Sequence in context: A247716 A252145 A249082 * A175973 A265651 A153428
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Nov 01 2010
EXTENSIONS
a(23)-a(30) from Lucas A. Brown, Mar 23 2024
Definition clarified by N. J. A. Sloane, Mar 23 2024
STATUS
approved