OFFSET
0,3
COMMENTS
There are several sequences of integers of the form ceiling(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,8,10,11,12, 14,15,16,19,20,23,24).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..900
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1,-1,1,-1,2,-1).
FORMULA
a(n) = round((2*n+1)*(2*n^2 + 2*n + 95)/288).
a(n) = floor((n+1)*(2*n^2 + n + 95)/144).
a(n) = ceiling((2*n^3 + 3*n^2 + 96*n)/144).
a(n) = a(n-24) + (n+1)*(n-24) + 220.
G.f.: x*(x^6 - x^3 + 1)/((x-1)^4*(x+1)*(x^2+1)*(x^2+x+1)). - Colin Barker, Oct 26 2012
EXAMPLE
a(24) = 0 + 1 + 1 + 1 + 1 + 2 + 2 + 3 + 3 + 4 + 5 + 6 + 6 + 8 + 9 + 10 + 11 + 13 + 14 + 16 + 17 + 19 + 21 + 23 + 24 = 220.
MAPLE
seq(floor((n+1)*(2*n^2+n+95)/144), n=0..50)
PROG
(Magma) [Floor((n+1)*(2*n^2+n+95)/144): n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
(PARI) a(n)=(n+1)*(2*n^2+n+95)\144 \\ Charles R Greathouse IV, Jul 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 05 2010
STATUS
approved