login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175341
Number of coprime pairs (x,y) with x^2+y^2 <= n^2.
3
0, 4, 8, 16, 32, 48, 72, 88, 120, 152, 192, 224, 264, 312, 384, 440, 480, 544, 616, 672, 768, 832, 928, 1000, 1112, 1192, 1280, 1384, 1488, 1584, 1704, 1816, 1960, 2072, 2224, 2344, 2480, 2600, 2752, 2912, 3064, 3184, 3360, 3480, 3696, 3856, 4016, 4176
OFFSET
0,2
LINKS
J. Wu, On the primitive circle problem, Monatsh. Math. 135 (2002), 69.
W. G. Zhai and X.D. Cao, On the number of coprime integer pairs within a circle, Acta Arith. 90 (1999), 1.
FORMULA
a(n) = 4*A176562(n). - R. J. Mathar, May 07 2010
a(n) = A304651(n^2). - Seiichi Manyama, May 26 2018
EXAMPLE
a(2) = 8 counts (x,y) = (-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0) and (1,1).
MATHEMATICA
a89[n_] := a89[n] = Product[{p, e} = pe; Which[p < 3 && e == 1, 1, p == 2 && e > 1, 0, Mod[p, 4] == 1, 2, Mod[p, 4] == 3, 0, True, a89[p^e]], {pe, FactorInteger[n]}];
b[n_] := b[n] = If[n == 0, 0, b[n-1] + 4 a89[n]];
a[n_] := b[n^2];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 02 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 16 2010
STATUS
approved