Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #85 Oct 22 2023 00:38:39
%S 1,5,13,28,49,82,123,179,248,335,434,561,702,867,1056,1276,1514,1791,
%T 2088,2427,2798,3205,3636,4127,4649,5213,5817,6477,7167,7929,8723,
%U 9580,10485,11444,12451,13549,14685,15881,17133,18475,19859,21339,22863,24471,26157
%N a(n) = Sum_{k<=n} A000203(k)*(n-k+1), where A000203(m) is the sum of divisors of m.
%C Partial sums of A024916. - _Omar E. Pol_, Jul 03 2014
%C a(n) is also the volume of the stepped pyramid with n levels described in A245092. - _Omar E. Pol_, Aug 12 2015
%C Also the alternating row sums of A262612. - _Omar E. Pol_, Nov 23 2015
%C From _Omar E. Pol_, Jan 20 2021: (Start)
%C Convolution of A000203 and A000027.
%C Convolution of A340793 and the nonzero terms of A000217.
%C Antidiagonal sums of A319073.
%C Row sums of A274824. (End)
%C Row sums of A345272. - _Omar E. Pol_, Jun 14 2021
%C Also the alternating row sums of A353690. - _Omar E. Pol_, Jun 05 2022
%H Alois P. Heinz, <a href="/A175254/b175254.txt">Table of n, a(n) for n = 1..10000</a> (first 2209 terms from Indranil Ghosh)
%F Conjecture: a(n) = Sum_{k=0..n} A006218(n-k). - _R. J. Mathar_, Oct 17 2012
%F a(n) = A000330(n) - A072481(n). - _Omar E. Pol_, Aug 12 2015
%F a(n) ~ Pi^2*n^3/36. - _Vaclav Kotesovec_, Sep 25 2016
%F G.f.: (1/(1 - x)^2)*Sum_{k>=1} k*x^k/(1 - x^k). - _Ilya Gutkovskiy_, Jan 03 2017
%F a(n) = Sum_{k=1..n} Sum_{i=1..k} k - (k mod i). - _Wesley Ivan Hurt_, Sep 13 2017
%F a(n) = A244050(n)/4. - _Omar E. Pol_, Jan 22 2021
%F a(n) = (n+1)*A024916(n) - A143128(n). - _Vaclav Kotesovec_, May 11 2022
%e For n = 4: a(4) = sigma(1)*4 + sigma(2)*3 + sigma(3)*2 + sigma(4)*1 = 1*4 + 3*3 + 4*2 + 7*1 = 28.
%p b:= proc(n) option remember; `if`(n<1, [0$2],
%p (p-> p+[numtheory[sigma](n), p[1]])(b(n-1)))
%p end:
%p a:= n-> b(n+1)[2]:
%p seq(a(n), n=1..45); # _Alois P. Heinz_, Oct 07 2021
%t Table[Sum[DivisorSigma[1, k] (n - k + 1), {k, n}], {n, 45}] (* _Michael De Vlieger_, Nov 24 2015 *)
%o (PARI) a(n) = sum(x=1, n, sigma(x)*(n-x+1)) \\ _Michel Marcus_, Mar 18 2013
%o (Python)
%o from math import isqrt
%o def A175254(n): return (((s:=isqrt(n))**2*(s+1)*((s+1)*(2*s+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+2*q+1)+3*(n+1)*(2*k+q+1)) for k in range(1,s+1)))//6 # _Chai Wah Wu_, Oct 21 2023
%Y Cf. A000203, A000217, A006218, A024916, A072481, A237593, A244050, A245092, A262612, A274824, A319073, A340793, A345272, A353690.
%Y Cf. A143128, A353908.
%K nonn,easy
%O 1,2
%A _Jaroslav Krizek_, Mar 14 2010
%E Corrected by _Jaroslav Krizek_, Mar 17 2010
%E More terms from _Michel Marcus_, Mar 18 2013