login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175083
Number of numbers whose sum of perfect divisors is equal to n.
1
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 3, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
OFFSET
1,6
COMMENTS
Perfect divisor of m is divisor d such that d^k = m for some k >= 1. See A175067 (sum of perfect divisors of n) and A175081 (values taken by the sum of perfect divisors of n (A175067) sorted into ascending order).
LINKS
PROG
(PARI)
up_to = 65537;
A175067(n) = (n+if(!ispower(n), 0, sumdiv(n, d, if((d>1)&&(d<n)&&((d^valuation(n, d))==n), d, 0))));
A175083list(up_to) = { my(range = Map(), v = vector(up_to), x); for(n=1, up_to, x=A175067(n); mapput(range, x, 1+if(!mapisdefined(range, x), 0, mapget(range, x)))); for(n=1, up_to, v[n]=if(!mapisdefined(range, n), 0, mapget(range, n))); (v); };
v175083 = A175083list(up_to);
A175083(n) = v175083[n]; \\ Antti Karttunen, Sep 25 2018
CROSSREFS
Sequence in context: A335699 A177207 A161528 * A323090 A355935 A180026
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 24 2010
EXTENSIONS
More terms from Antti Karttunen, Sep 25 2018
STATUS
approved