login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A175083
Number of numbers whose sum of perfect divisors is equal to n.
1
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 3, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
OFFSET
1,6
COMMENTS
Perfect divisor of m is divisor d such that d^k = m for some k >= 1. See A175067 (sum of perfect divisors of n) and A175081 (values taken by the sum of perfect divisors of n (A175067) sorted into ascending order).
LINKS
PROG
(PARI)
up_to = 65537;
A175067(n) = (n+if(!ispower(n), 0, sumdiv(n, d, if((d>1)&&(d<n)&&((d^valuation(n, d))==n), d, 0))));
A175083list(up_to) = { my(range = Map(), v = vector(up_to), x); for(n=1, up_to, x=A175067(n); mapput(range, x, 1+if(!mapisdefined(range, x), 0, mapget(range, x)))); for(n=1, up_to, v[n]=if(!mapisdefined(range, n), 0, mapget(range, n))); (v); };
v175083 = A175083list(up_to);
A175083(n) = v175083[n]; \\ Antti Karttunen, Sep 25 2018
CROSSREFS
Sequence in context: A335699 A177207 A161528 * A323090 A355935 A180026
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 24 2010
EXTENSIONS
More terms from Antti Karttunen, Sep 25 2018
STATUS
approved