login
A174942
a(n) = Sum_{k<=n} A007955(k) * A008683(n-k+1) = Sum_{k<=n} A007955(k) * mu(n-k+1), where A007955(m) = product of divisors of m.
0
1, 1, 0, 3, -7, 22, -36, 14, -44, -29, -91, 1525, -1692, -1686, 109, -1246, 534, 2818, -5769, 1034, -5042, -16561, 5185, 315777, -321633, -338860, 5749, -319896, 318256, 441483, -804427, -801359, 330352, -1196712, 810803, 8888500, -9692338, -9803611, 814401, -8682691
OFFSET
1,4
EXAMPLE
For n = 4, A007955(n) = b(n): a(4) = b(1)*mu(4) + b(2)*mu(3) + b(3)* mu(2) + b(4)*mu(1) = 1*0 + 2*(-1) + 3*(-1) + 8*1 = 3.
MATHEMATICA
a[n_] := Sum[k^(DivisorSigma[0, k]/2) * MoebiusMu[n-k+1], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Aug 06 2024 *)
CROSSREFS
Sequence in context: A177820 A174230 A158236 * A128599 A182174 A080882
KEYWORD
sign
AUTHOR
Jaroslav Krizek, Apr 02 2010
EXTENSIONS
More terms from Amiram Eldar, Aug 06 2024
STATUS
approved