login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k<=n} A007955(k) * A000027(n-k+1) = Sum_{k<=n} A007955(k) * (n-k+1), where A007955(m) = product of divisors of m.
0

%I #6 Aug 06 2024 02:09:17

%S 1,4,10,24,43,98,160,286,439,692,956,2948,4953,7154,9580,13030,16497,

%T 25796,35114,52432,70191,88434,106700,456742,806909,1157752,1509324,

%U 1882848,2256401,3439954,4623538,5839890,7057331,8275928,9495750,20793268,32090823,43389822

%N a(n) = Sum_{k<=n} A007955(k) * A000027(n-k+1) = Sum_{k<=n} A007955(k) * (n-k+1), where A007955(m) = product of divisors of m.

%e For n = 4, A007955(n) = b(n): a(4) = b(1)*4 + b(2)*3 + b(3)* 2 + b(4)*1 = 1*4 + 2*3 + 3*2 + 8*1 = 24.

%t a[n_] := Sum[k^(DivisorSigma[0, k]/2) * (n-k+1), {k, 1, n}]; Array[a, 50] (* _Amiram Eldar_, Aug 06 2024 *)

%Y Cf. A000027, A007955.

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Apr 02 2010

%E More terms from _Amiram Eldar_, Aug 06 2024