The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174834 A symmetrical triangular sequence:t(n,m)=(StirlingS1[n, m] + StirlingS1[n, n - m])*Binomial[n, m] - (StirlingS1[n, 0] + StirlingS1[n, n - 0])* Binomial[n, 0] + 1 0
 1, 1, 1, 1, -4, 1, 1, -3, -3, 1, 1, -48, 132, -48, 1, 1, 70, -150, -150, 70, 1, 1, -810, 5385, -9000, 5385, -810, 1, 1, 4893, -33369, 31115, 31115, -33369, 4893, 1, 1, -40544, 374920, -845152, 947660, -845152, 374920, -40544, 1, 1, 362556, -3925368 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, -2, -4, 38, -158, 152, 5280, -73890, 658742, -3723898,...}. LINKS FORMULA t(n,m)=(StirlingS1[n, m] + StirlingS1[n, n - m])*Binomial[n, m] - (StirlingS1[n, 0] + StirlingS1[n, n - 0])* Binomial[n, 0] + 1 EXAMPLE {1}, {1, 1}, {1, -4, 1}, {1, -3, -3, 1}, {1, -48, 132, -48, 1}, {1, 70, -150, -150, 70, 1}, {1, -810, 5385, -9000, 5385, -810, 1}, {1, 4893, -33369, 31115, 31115, -33369, 4893, 1}, {1, -40544, 374920, -845152, 947660, -845152, 374920, -40544, 1}, {1, 362556, -3925368, 9541392, -5649210, -5649210, 9541392, -3925368, 362556, 1}, {1, -3629250, 46235070, -141858000, 165260130, -135739800, 165260130, -141858000, 46235070, -3629250, 1} MATHEMATICA t[n_, m_]=( StirlingS1[n, m]+StirlingS1[n, n-m])*Binomial[n, m]-(StirlingS1[n, 0]+StirlingS1[n, n-0])*Binomial[n, 0]+1; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Cf. A154843 Sequence in context: A010323 A353647 A261790 * A100642 A320438 A255511 Adjacent sequences:  A174831 A174832 A174833 * A174835 A174836 A174837 KEYWORD sign,tabl,uned AUTHOR Roger L. Bagula, Mar 30 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 23:50 EDT 2022. Contains 355995 sequences. (Running on oeis4.)