login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174815
Decimal expansion of sqrt(2)*e^(gamma), where gamma is Euler's constant.
1
2, 5, 1, 8, 8, 1, 6, 7, 6, 9, 0, 9, 0, 3, 8, 0, 0, 7, 4, 4, 9, 5, 9, 3, 4, 5, 3, 5, 4, 1, 7, 7, 8, 0, 3, 7, 8, 8, 4, 3, 3, 3, 6, 0, 2, 1, 3, 6, 1, 3, 3, 2, 6, 4, 8, 8, 0, 4, 5, 9, 8, 9, 1, 5, 5, 4, 9, 7, 2, 1, 4, 4, 3, 1, 4, 8, 9, 6, 6, 6, 5, 2, 3, 0, 3, 8, 3, 2, 0, 9, 5, 2, 4, 4, 4, 7, 5, 6, 5, 6, 8, 7, 9, 9, 2, 0
OFFSET
1,1
COMMENTS
This constant appears when comparing various divergent series after n iterations.
LINKS
Eric Weisstein's World of Mathematics, Mersenne Prime
FORMULA
lim_{n->oo} e^sum(1/k, k=1..n) / sqrt(1+2+3+...+n) = sqrt(2)*e^gamma.
EXAMPLE
sqrt(2)*e^(gamma) = 2.5188167690903800744959345354177803788433360213612...
MAPLE
evalf(sqrt(2)*exp(gamma), 99);
MATHEMATICA
RealDigits[Sqrt[2]*Exp[EulerGamma], 10, 100][[1]] (* G. C. Greubel, Sep 06 2018 *)
PROG
(PARI) sqrt(2)*exp(Euler) \\ Charles R Greathouse IV, Aug 01 2011
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2)* Exp(EulerGamma(R)); // G. C. Greubel, Sep 06 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ryan Gerard (rsgerard(AT)gmail.com), Mar 29 2010
EXTENSIONS
Comments containing infinities removed by Jonathan Sondow, Aug 01 2011
STATUS
approved