login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174650
Expansion of 1 / (1 - x - x^2 + x^3 - x^5 + x^15 - x^17 - x^18 + x^19 + x^20).
1
1, 1, 2, 2, 3, 4, 6, 9, 13, 19, 27, 39, 56, 81, 117, 168, 242, 348, 503, 725, 1046, 1506, 2169, 3124, 4501, 6487, 9348, 13471, 19409, 27965, 40293, 58058, 83657, 120540, 173684, 250255, 360589, 519568, 748642, 1078708, 1554291, 2239548, 3226923, 4649623
OFFSET
0,3
COMMENTS
Limiting ratio is 1.4408839873261408 ... .
REFERENCES
Henry McKean and Victor Moll, Elliptic Curves - Function Theory, Geometry, Arithmetic. Cambridge University Press, New York, 1999, page 173 (ISBN-13: 978-0521658171).
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,1,0,0,0,0,0,0,0,0,0,-1,0,1,1,-1,-1).
FORMULA
G.f.: 1 / ( (x-1)*(1+x)*(x^18+x^17+x^13+x^11+x^9+x^7+x^5+x-1) ).
MATHEMATICA
f[x_] = 1 - x^2 + x^3 + x^4 - x^5;
p[x_] = ExpandAll[x^5*f[-1/x] - x^(5 + 10)*f[x]];
f[x_] = ExpandAll[x^20*p[1/x]]
a = Table[SeriesCoefficient[
Series[1/f[x], {x, 0, 100}], n], {n, 0, 100}]
(* or *) LinearRecurrence[{1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 1, -1, -1}, {1, 1, 2, 2, 3, 4, 6, 9, 13, 19, 27, 39, 56, 81, 117, 168, 242, 348, 503, 725}, 1001] (* Georg Fischer, signature from Colin Barker, Feb 28 2019 *)
CROSSREFS
Sequence in context: A289433 A351973 A212264 * A107293 A329693 A329976
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 29 2010
STATUS
approved