login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174568
Numbers n such that phi(n) + sigma(n) = sigma(n + phi(n))
1
2, 3, 7, 19, 31, 37, 79, 97, 99, 135, 139, 157, 198, 199, 211, 229, 271, 287, 307, 331, 337, 350, 367, 379, 439, 499, 539, 547, 577, 601, 607, 619, 661, 671, 691, 727, 811, 829, 877, 923, 937, 967, 997, 1009, 1069, 1171, 1237, 1254, 1279, 1297, 1399, 1429
OFFSET
1,1
COMMENTS
A005382 is included in this sequence : if p and 2p-1 primes, phi(p) = p-1, sigma(p)=p+1 and sigma(2p-1)=2p => phi(p) +sigma(p) = sigma(p+phi(p)). See the similar sequence A005384.
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
EXAMPLE
2 is in the sequence because phi(2) + sigma(2) = 1 + 3 = 4, and sigma(2 + phi(2)) = sigma(3) = 4;
99 is in the sequence because phi(99) + sigma(99) = 60 + 156 = 216, and sigma(99 + phi(99)) = sigma(159) = 216.
MAPLE
with(numtheory):for n from 1 to 3000 do :if phi(n)+sigma(n) = sigma(n+phi(n)) then print(n):else fi:od:
MATHEMATICA
Select[Range[1500], EulerPhi[#]+DivisorSigma[1, #]==DivisorSigma[1, #+ EulerPhi[ #]]&] (* Harvey P. Dale, Jul 05 2018 *)
PROG
(Magma) [n: n in [1..1500] | (EulerPhi(n) + SumOfDivisors(n)) eq (SumOfDivisors(n + EulerPhi(n)))]; // Vincenzo Librandi, Jul 15 2015
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 22 2010
STATUS
approved