OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,39,0,0,-39,0,0,1).
FORMULA
a(n) = 39*a(n-3)-39*a(n-6)+a(n-9). G.f.: -(x^2-x+1) * (x^6 -6*x^5 -6*x^4 -2*x^3 +42*x^2 +6*x +1) / ((x-1)*(x^2+x+1)*(x^6-38*x^3+1)). [Colin Barker, Jan 20 2013]
From Peter Bala, Jan 25 2013: (Start)
The above conjectures are correct. The real number exp( Sum {n>=1} 1/(n*A085447(n)) ) is equal to the infinite product F(x) := product {n >= 0} (1 + x^(4*n+3))/(1 - x^(4*n+1)) evaluated at x = sqrt(10) - 3. Ramanujan has given a continued fraction expansion for the product F(x). Using this we can find the simple continued fraction expansion of the numbers F(1/2*(sqrt(N^2 + 4) - N)), N a positive integer. The present case is when N = 6. See the Bala link for details.
The theory also provides the simple continued fraction expansion of the numbers F({sqrt(10) - 3}^(2*k+1)), k = 1, 2, 3, ...: if [1; c(1), c(2), 1, c(3), c(4), 1, ...] denotes the present sequence then the simple continued fraction expansion of F({sqrt(10) - 3}^(2*k+1)) is given by [1; c(2*k+1), c(2*(2*k+1)), 1, c(3*(2*k+1)), c(4*(2*k+1)), 1, ...].
(End)
EXAMPLE
Let L = Sum_{n>=1} 1/(n*A085447(n)) or, more explicitly,
L = 1/6 + 1/(2*38) + 1/(3*234) + 1/(4*1442) + 1/(5*8886) +...
so that L = 0.1814484777922995750614847484088330644558009487798...
then exp(L) = 1.1989527624251050123398509513177598419795554140316...
equals the continued fraction given by this sequence:
exp(L) = [1;5,37,1,233,1441,1,8885,54757,1,337433,...]; i.e.,
exp(L) = 1 + 1/(5 + 1/(37 + 1/(1 + 1/(233 + 1/(1441 + 1/(1 +...)))))).
Compare these partial quotients to A085447(n), n=1,2,3,...:
[6,38,234,1442,8886,54758,337434,2079362,12813606,78960998,...].
MATHEMATICA
LinearRecurrence[{0, 0, 39, 0, 0, -39, 0, 0, 1}, {1, 5, 37, 1, 233, 1441, 1, 8885, 54757}, 30] (* Harvey P. Dale, Aug 07 2016 *)
PROG
(PARI) {a(n)=local(L=sum(m=1, 2*n+1000, 1./(m*round((3+sqrt(10))^m+(3-sqrt(10))^m)))); contfrac(exp(L))[n]}
CROSSREFS
KEYWORD
cofr,nonn,easy
AUTHOR
Paul D. Hanna, Mar 21 2010
STATUS
approved