login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174433
Triangle read by rows: T(n,k) = prime(n) mod A001223(k), where A001223 are differences between consecutive primes.
2
0, 0, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 3, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, 3, 1, 3, 0, 1, 1, 3, 1, 3, 1, 3, 5, 0, 1, 1, 1, 1, 1, 1, 1, 5, 1, 0, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 0, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3
OFFSET
1,10
COMMENTS
The first prime gap is 3-2=1, so the first column is T(n,1)=0. The second and third prime gaps are 5-3=2 and 7-5=2, and since all primes > 2 are odd, T(n,2) = T(n,3) = 1.
EXAMPLE
Triangle begins:
0;
0,1;
0,1,1;
0,1,1,3;
0,1,1,3,1;
MAPLE
A001223 := proc(n) ithprime(n+1)-ithprime(n) ; end proc:
A174433 := proc(n, k) ithprime(n) mod A001223(k) ; end proc:
seq(seq(A174433(n, k), k=1..n), n=1..14) ;
CROSSREFS
Cf. A000040.
Sequence in context: A350829 A249767 A341411 * A174624 A029358 A088512
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved