Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:45:51
%S 2,13,1223,2357,4013,4027,4507,5903,8713,9623,10663,11717,12757,12983,
%T 13883,15877,16103,16787,16823,16883,18097,22697,23357,24677,26107,
%U 27953,28603,30313,31327,34147,35617,35933,41183,44893,46687,46817,48247,50417,52963,54083
%N Primes p such that 2*p^3 -+ 3 are also prime.
%C Intersection of A153507 and A243630. - _Felix Fröhlich_, Nov 27 2019
%H Harvey P. Dale and K. D. Bajpai, <a href="/A174363/b174363.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Harvey P. Dale)
%e For p=2, 2*2^3 -+ 3 = (13, 19), both prime, so 2 is a term of the sequence.
%e For p=13, 2*13^3 -+ 3 = (4391, 4397), both prime, so 13 is a term of the sequence.
%p select(p -> andmap(isprime, [p, 2*p^3+3, 2*p^3-3]), [seq(p, p=1.. 10^5)]); # _K. D. Bajpai_, Nov 28 2019
%t Select[Prime[Range[5000]],And@@PrimeQ[2 #^3+{3,-3}]&] (* _Harvey P. Dale_, Jan 25 2013 *)
%o (Magma) [p: p in PrimesUpTo(100000)|IsPrime(2*p^3-3) and IsPrime(2*p^3+3)]
%o (PARI) forprime(p=1, 55000, if(ispseudoprime(2*p^3-3) && ispseudoprime(2*p^3+3), print1(p, ", "))) \\ _Felix Fröhlich_, Nov 27 2019
%Y Cf. A153507, A243630.
%K nonn
%O 1,1
%A _Vincenzo Librandi_, Mar 17 2010