login
A174363
Primes p such that 2*p^3 -+ 3 are also prime.
3
2, 13, 1223, 2357, 4013, 4027, 4507, 5903, 8713, 9623, 10663, 11717, 12757, 12983, 13883, 15877, 16103, 16787, 16823, 16883, 18097, 22697, 23357, 24677, 26107, 27953, 28603, 30313, 31327, 34147, 35617, 35933, 41183, 44893, 46687, 46817, 48247, 50417, 52963, 54083
OFFSET
1,1
COMMENTS
Intersection of A153507 and A243630. - Felix Fröhlich, Nov 27 2019
LINKS
Harvey P. Dale and K. D. Bajpai, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale)
EXAMPLE
For p=2, 2*2^3 -+ 3 = (13, 19), both prime, so 2 is a term of the sequence.
For p=13, 2*13^3 -+ 3 = (4391, 4397), both prime, so 13 is a term of the sequence.
MAPLE
select(p -> andmap(isprime, [p, 2*p^3+3, 2*p^3-3]), [seq(p, p=1.. 10^5)]); # K. D. Bajpai, Nov 28 2019
MATHEMATICA
Select[Prime[Range[5000]], And@@PrimeQ[2 #^3+{3, -3}]&] (* Harvey P. Dale, Jan 25 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(100000)|IsPrime(2*p^3-3) and IsPrime(2*p^3+3)]
(PARI) forprime(p=1, 55000, if(ispseudoprime(2*p^3-3) && ispseudoprime(2*p^3+3), print1(p, ", "))) \\ Felix Fröhlich, Nov 27 2019
CROSSREFS
Sequence in context: A064185 A069109 A004071 * A158026 A103641 A144983
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Mar 17 2010
STATUS
approved