login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174363
Primes p such that 2*p^3 -+ 3 are also prime.
3
2, 13, 1223, 2357, 4013, 4027, 4507, 5903, 8713, 9623, 10663, 11717, 12757, 12983, 13883, 15877, 16103, 16787, 16823, 16883, 18097, 22697, 23357, 24677, 26107, 27953, 28603, 30313, 31327, 34147, 35617, 35933, 41183, 44893, 46687, 46817, 48247, 50417, 52963, 54083
OFFSET
1,1
COMMENTS
Intersection of A153507 and A243630. - Felix Fröhlich, Nov 27 2019
LINKS
Harvey P. Dale and K. D. Bajpai, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale)
EXAMPLE
For p=2, 2*2^3 -+ 3 = (13, 19), both prime, so 2 is a term of the sequence.
For p=13, 2*13^3 -+ 3 = (4391, 4397), both prime, so 13 is a term of the sequence.
MAPLE
select(p -> andmap(isprime, [p, 2*p^3+3, 2*p^3-3]), [seq(p, p=1.. 10^5)]); # K. D. Bajpai, Nov 28 2019
MATHEMATICA
Select[Prime[Range[5000]], And@@PrimeQ[2 #^3+{3, -3}]&] (* Harvey P. Dale, Jan 25 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(100000)|IsPrime(2*p^3-3) and IsPrime(2*p^3+3)]
(PARI) forprime(p=1, 55000, if(ispseudoprime(2*p^3-3) && ispseudoprime(2*p^3+3), print1(p, ", "))) \\ Felix Fröhlich, Nov 27 2019
CROSSREFS
Sequence in context: A064185 A069109 A004071 * A158026 A103641 A144983
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Mar 17 2010
STATUS
approved