The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174038 Triangle T(n, k, q) = Sum_{j>=0} q^j * floor(binomial(n, k)/2^j) with q = 3, read by rows. 3
 1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 19, 24, 19, 1, 1, 20, 70, 70, 20, 1, 1, 24, 90, 230, 90, 24, 1, 1, 25, 231, 671, 671, 231, 25, 1, 1, 65, 295, 941, 2083, 941, 295, 65, 1, 1, 66, 684, 2289, 3024, 3024, 2289, 684, 66, 1, 1, 70, 750, 3000, 8580, 9324, 8580, 3000, 750, 70, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n, k, q) = Sum_{j>=0} q^j * floor(binomial(n, k)/2^j) with q = 3. EXAMPLE The triangle begins as: 1; 1, 1; 1, 5, 1; 1, 6, 6, 1; 1, 19, 24, 19, 1; 1, 20, 70, 70, 20, 1; 1, 24, 90, 230, 90, 24, 1; 1, 25, 231, 671, 671, 231, 25, 1; 1, 65, 295, 941, 2083, 941, 295, 65, 1; 1, 66, 684, 2289, 3024, 3024, 2289, 684, 66, 1; 1, 70, 750, 3000, 8580, 9324, 8580, 3000, 750, 70, 1; MATHEMATICA T[n_, k_, q_]:= Sum[q^j*Floor[Binomial[n, k]/2^j], {j, 0, 2*n}]; Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 16 2021 *) PROG (Magma) T:= func< n, k, q | (&+[q^j*Floor(Binomial(n, k)/2^j): j in [0..2*n]]) >; [T(n, k, 3): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 16 2021 (Sage) def T(n, k, q): return sum(q^j*( binomial(n, k)//2^j ) for j in (0..2*n)) flatten([[T(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021 CROSSREFS Cf. A174032 (q=1), A174037 (q=2), this sequence (q=3). Sequence in context: A297986 A298635 A171146 * A328098 A200401 A214228 Adjacent sequences: A174035 A174036 A174037 * A174039 A174040 A174041 KEYWORD nonn,tabl,less,easy AUTHOR Roger L. Bagula, Mar 06 2010 EXTENSIONS Edited by G. C. Greubel, Apr 16 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 22:48 EDT 2024. Contains 371639 sequences. (Running on oeis4.)