login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174038
Triangle T(n, k, q) = Sum_{j>=0} q^j * floor(binomial(n, k)/2^j) with q = 3, read by rows.
3
1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 19, 24, 19, 1, 1, 20, 70, 70, 20, 1, 1, 24, 90, 230, 90, 24, 1, 1, 25, 231, 671, 671, 231, 25, 1, 1, 65, 295, 941, 2083, 941, 295, 65, 1, 1, 66, 684, 2289, 3024, 3024, 2289, 684, 66, 1, 1, 70, 750, 3000, 8580, 9324, 8580, 3000, 750, 70, 1
OFFSET
0,5
FORMULA
T(n, k, q) = Sum_{j>=0} q^j * floor(binomial(n, k)/2^j) with q = 3.
EXAMPLE
The triangle begins as:
1;
1, 1;
1, 5, 1;
1, 6, 6, 1;
1, 19, 24, 19, 1;
1, 20, 70, 70, 20, 1;
1, 24, 90, 230, 90, 24, 1;
1, 25, 231, 671, 671, 231, 25, 1;
1, 65, 295, 941, 2083, 941, 295, 65, 1;
1, 66, 684, 2289, 3024, 3024, 2289, 684, 66, 1;
1, 70, 750, 3000, 8580, 9324, 8580, 3000, 750, 70, 1;
MATHEMATICA
T[n_, k_, q_]:= Sum[q^j*Floor[Binomial[n, k]/2^j], {j, 0, 2*n}];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 16 2021 *)
PROG
(Magma)
T:= func< n, k, q | (&+[q^j*Floor(Binomial(n, k)/2^j): j in [0..2*n]]) >;
[T(n, k, 3): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 16 2021
(Sage)
def T(n, k, q): return sum(q^j*( binomial(n, k)//2^j ) for j in (0..2*n))
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021
CROSSREFS
Cf. A174032 (q=1), A174037 (q=2), this sequence (q=3).
Sequence in context: A297986 A298635 A171146 * A328098 A200401 A214228
KEYWORD
nonn,tabl,less,easy
AUTHOR
Roger L. Bagula, Mar 06 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 16 2021
STATUS
approved