The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171146 The sequence of coefficients of a polynomial recursion: p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n - 1)*x + 1)^Floor[n/2]] ( correction) 0
 1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 18, 83, 18, 1, 1, 19, 101, 101, 19, 1, 1, 39, 510, 2275, 510, 39, 1, 1, 40, 549, 2785, 2785, 549, 40, 1, 1, 68, 1738, 19856, 86995, 19856, 1738, 68, 1, 1, 69, 1806, 21594, 106851, 106851, 21594, 1806, 69, 1, 1, 105, 4415, 93030, 985645 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are: {1, 2, 7, 14, 121, 242, 3375, 6750, 130321, 260642, 6436343, 12872686...}. LINKS Table of n, a(n) for n=1..60. FORMULA p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + (2*n - 1)*x + 1)^Floor[n/2]] EXAMPLE {1}, {1, 1}, {1, 5, 1}, {1, 6, 6, 1}, {1, 18, 83, 18, 1}, {1, 19, 101, 101, 19, 1}, {1, 39, 510, 2275, 510, 39, 1}, {1, 40, 549, 2785, 2785, 549, 40, 1}, {1, 68, 1738, 19856, 86995, 19856, 1738, 68, 1}, {1, 69, 1806, 21594, 106851, 106851, 21594, 1806, 69, 1}, {1, 105, 4415, 93030, 985645, 4269951, 985645, 93030, 4415, 105, 1}, {1, 106, 4520, 97445, 1078675, 5255596, 5255596, 1078675, 97445, 4520, 106, 1} MATHEMATICA Clear[p, n, x, a] p[x, 1] := 1; p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + (2*n - 1)*x + 1)^Floor[n/2]]; a = Table[CoefficientList[p[x, n], x], {n, 1, 12}]; Flatten[a] CROSSREFS Cf. A051159 , A169623, A007318, A171142, A171143 Sequence in context: A050178 A297986 A298635 * A174038 A328098 A200401 Adjacent sequences: A171143 A171144 A171145 * A171147 A171148 A171149 KEYWORD nonn,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Dec 04 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 06:13 EDT 2024. Contains 371623 sequences. (Running on oeis4.)