login
A173827
Primes p such that p+(floor(Sqrt(p)))^2 is prime.
1
2, 7, 37, 43, 47, 67, 73, 149, 163, 167, 223, 337, 349, 353, 359, 409, 421, 439, 487, 499, 577, 587, 617, 691, 787, 823, 829, 911, 947, 1039, 1063, 1087, 1201, 1297, 1321, 1361, 1367, 1453, 1459, 1483, 1609, 1621, 1657, 1777, 1783, 1987, 1993, 2011, 2137, 2143
OFFSET
1,1
COMMENTS
2+1=3 prime, 7+4=11 prime, 37+36=73 prime,...
MATHEMATICA
f[n_]:=n+(Floor[Sqrt[n]])^2; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, p]], {n, 7!}]; lst
Select[Prime[Range[400]], PrimeQ[#+Floor[Sqrt[#]]^2]&] (* Harvey P. Dale, Apr 24 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved