OFFSET
0,2
COMMENTS
The intersection of this sequence and A121290 is the sequence 1, 5, 85, 341, 5461, 21845, .... - Paul Muljadi, Jan 27 2011
FORMULA
T(n,k) = (k^n)*([x^n] 1/(x^2 - (1/k + k)*x + 1)).
EXAMPLE
Square array begins:
n\k | 1 2 3 4 5 6 ...
-----------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 2 5 10 17 26 37 ...
2 | 3 21 91 273 651 1333 ...
3 | 4 85 820 4369 16276 47989 ...
4 | 5 341 7381 69905 406901 1727605 ...
5 | 6 1365 66430 1118481 10172526 62193781 ...
6 | 7 5461 597871 17895697 254313151 2238976117 ...
...
MATHEMATICA
p[x_, q_] = 1/(x^2 - (1/q + q)*x + 1);
a = Table[Table[n^m*SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 1, 21}];
Flatten[Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]]
PROG
(Maxima)
T(n, k) := k^n*chebyshev_u(n, (1/k + k)/2)$
create_list(T(n - k + 1, k), n, 0, 12, k, 1, n + 1);
/* Franck Maminirina Ramaharo, Jan 18 2019 */
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Feb 22 2010
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Jan 24 2019
STATUS
approved