login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173588
T(n,k) = (k^n)*U(n, (1/k + k)/2), where U(n,x) is the n-th Chebyshev polynomial of the second kind, square array read by antidiagonals upward (n >= 0, k >= 1).
3
1, 2, 1, 3, 5, 1, 4, 21, 10, 1, 5, 85, 91, 17, 1, 6, 341, 820, 273, 26, 1, 7, 1365, 7381, 4369, 651, 37, 1, 8, 5461, 66430, 69905, 16276, 1333, 50, 1, 9, 21845, 597871, 1118481, 406901, 47989, 2451, 65, 1, 10, 87381, 5380840, 17895697, 10172526, 1727605, 120100, 4161, 82, 1
OFFSET
0,2
COMMENTS
The intersection of this sequence and A121290 is the sequence 1, 5, 85, 341, 5461, 21845, .... - Paul Muljadi, Jan 27 2011
FORMULA
T(n,k) = (k^n)*([x^n] 1/(x^2 - (1/k + k)*x + 1)).
EXAMPLE
Square array begins:
n\k | 1 2 3 4 5 6 ...
-----------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 2 5 10 17 26 37 ...
2 | 3 21 91 273 651 1333 ...
3 | 4 85 820 4369 16276 47989 ...
4 | 5 341 7381 69905 406901 1727605 ...
5 | 6 1365 66430 1118481 10172526 62193781 ...
6 | 7 5461 597871 17895697 254313151 2238976117 ...
...
MATHEMATICA
p[x_, q_] = 1/(x^2 - (1/q + q)*x + 1);
a = Table[Table[n^m*SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 1, 21}];
Flatten[Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]]
PROG
(Maxima)
T(n, k) := k^n*chebyshev_u(n, (1/k + k)/2)$
create_list(T(n - k + 1, k), n, 0, 12, k, 1, n + 1);
/* Franck Maminirina Ramaharo, Jan 18 2019 */
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Roger L. Bagula, Feb 22 2010
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Jan 24 2019
STATUS
approved