login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = (1/2)*Sum_{j=1..2*n} k^j, read by rows.
1

%I #9 Apr 26 2021 01:55:09

%S 2,5,5,9,30,9,14,123,123,14,20,425,1092,425,20,27,1413,7650,7650,1413,

%T 27,35,4872,54051,87380,54051,4872,35,44,17783,426573,943190,943190,

%U 426573,17783,44,54,67875,3655854,12192579,12207030,12192579,3655854,67875,54

%N Triangle T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = (1/2)*Sum_{j=1..2*n} k^j, read by rows.

%H G. C. Greubel, <a href="/A173567/b173567.txt">Rows n = 1..50 of the triangle, flattened</a>

%F T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = (1/2)*Sum_{j=1..2*n} k^j.

%F T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = k*(1 - k^(2*n))/(1-k) with f(n, 1) = 2*n. - _G. C. Greubel_, Apr 25 2021

%e Triangle begins as:

%e 2;

%e 5, 5;

%e 9, 30, 9;

%e 14, 123, 123, 14;

%e 20, 425, 1092, 425, 20;

%e 27, 1413, 7650, 7650, 1413, 27;

%e 35, 4872, 54051, 87380, 54051, 4872, 35;

%e 44, 17783, 426573, 943190, 943190, 426573, 17783, 44;

%e 54, 67875, 3655854, 12192579, 12207030, 12192579, 3655854, 67875, 54;

%t f[n_, k_]:= If[k==1, 2*n, k*(1-k^(2*n))/(1-k)];

%t T[n_, k_]:= (f[k, n-k+1] + f[n-k+1, k])/2;

%t Table[T[n, k], {n,10}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Apr 25 2021 *)

%o (Sage)

%o def f(n,k): return 2*n if k==1 else k*(1-k^(2*n))/(1-k)

%o def T(n,k): return (f(k, n-k+1) + f(n-k+1, k))/2

%o flatten([[T(n,k) for k in (1..n)] for n in (1..10)]) # _G. C. Greubel_, Apr 25 2021

%K nonn,tabl

%O 1,1

%A _Roger L. Bagula_, Feb 22 2010

%E Edited by _G. C. Greubel_, Apr 25 2021