login
A173567
Triangle T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = (1/2)*Sum_{j=1..2*n} k^j, read by rows.
1
2, 5, 5, 9, 30, 9, 14, 123, 123, 14, 20, 425, 1092, 425, 20, 27, 1413, 7650, 7650, 1413, 27, 35, 4872, 54051, 87380, 54051, 4872, 35, 44, 17783, 426573, 943190, 943190, 426573, 17783, 44, 54, 67875, 3655854, 12192579, 12207030, 12192579, 3655854, 67875, 54
OFFSET
1,1
FORMULA
T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = (1/2)*Sum_{j=1..2*n} k^j.
T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = k*(1 - k^(2*n))/(1-k) with f(n, 1) = 2*n. - G. C. Greubel, Apr 25 2021
EXAMPLE
Triangle begins as:
2;
5, 5;
9, 30, 9;
14, 123, 123, 14;
20, 425, 1092, 425, 20;
27, 1413, 7650, 7650, 1413, 27;
35, 4872, 54051, 87380, 54051, 4872, 35;
44, 17783, 426573, 943190, 943190, 426573, 17783, 44;
54, 67875, 3655854, 12192579, 12207030, 12192579, 3655854, 67875, 54;
MATHEMATICA
f[n_, k_]:= If[k==1, 2*n, k*(1-k^(2*n))/(1-k)];
T[n_, k_]:= (f[k, n-k+1] + f[n-k+1, k])/2;
Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 25 2021 *)
PROG
(Sage)
def f(n, k): return 2*n if k==1 else k*(1-k^(2*n))/(1-k)
def T(n, k): return (f(k, n-k+1) + f(n-k+1, k))/2
flatten([[T(n, k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Apr 25 2021
CROSSREFS
Sequence in context: A050175 A243333 A059797 * A288726 A344572 A265129
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 22 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 25 2021
STATUS
approved