login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173567
Triangle T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = (1/2)*Sum_{j=1..2*n} k^j, read by rows.
1
2, 5, 5, 9, 30, 9, 14, 123, 123, 14, 20, 425, 1092, 425, 20, 27, 1413, 7650, 7650, 1413, 27, 35, 4872, 54051, 87380, 54051, 4872, 35, 44, 17783, 426573, 943190, 943190, 426573, 17783, 44, 54, 67875, 3655854, 12192579, 12207030, 12192579, 3655854, 67875, 54
OFFSET
1,1
FORMULA
T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = (1/2)*Sum_{j=1..2*n} k^j.
T(n, k) = (f(k, n-k+1) + f(n-k+1, k))/2 where f(n, k) = k*(1 - k^(2*n))/(1-k) with f(n, 1) = 2*n. - G. C. Greubel, Apr 25 2021
EXAMPLE
Triangle begins as:
2;
5, 5;
9, 30, 9;
14, 123, 123, 14;
20, 425, 1092, 425, 20;
27, 1413, 7650, 7650, 1413, 27;
35, 4872, 54051, 87380, 54051, 4872, 35;
44, 17783, 426573, 943190, 943190, 426573, 17783, 44;
54, 67875, 3655854, 12192579, 12207030, 12192579, 3655854, 67875, 54;
MATHEMATICA
f[n_, k_]:= If[k==1, 2*n, k*(1-k^(2*n))/(1-k)];
T[n_, k_]:= (f[k, n-k+1] + f[n-k+1, k])/2;
Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 25 2021 *)
PROG
(Sage)
def f(n, k): return 2*n if k==1 else k*(1-k^(2*n))/(1-k)
def T(n, k): return (f(k, n-k+1) + f(n-k+1, k))/2
flatten([[T(n, k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Apr 25 2021
CROSSREFS
Sequence in context: A050175 A243333 A059797 * A288726 A344572 A265129
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 22 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 25 2021
STATUS
approved