login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (A000045(n)-A173432(n))/2.
0

%I #8 Jun 29 2021 15:22:35

%S 0,0,0,1,2,4,6,10,16,27,44,72,116,188,304,493,798,1292,2090,3382,5472,

%T 8855,14328,23184,37512,60696,98208,158905,257114,416020,673134,

%U 1089154,1762288,2851443,4613732,7465176

%N a(n) = (A000045(n)-A173432(n))/2.

%C Also the NW-SE diagonal sums of A173402.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,2,0,-1).

%F a(n) + A173433(n) = A000045(n).

%F a(n)= 2*a(n-1) -2*a(n-3) +2*a(n-4) -a(n-6). - _R. J. Mathar_, Mar 01 2010

%F G.f.: x^4 / ( (x-1)*(1+x)*(x^2-x+1)*(x^2+x-1) ). - _R. J. Mathar_, Nov 03 2016

%t CoefficientList[Series[x^4/((x-1)(1+x)(x^2-x+1)(x^2+x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-2,2,0,-1},{0,0,0,0,1,2},40] (* _Harvey P. Dale_, Jun 29 2021 *)

%Y Cf. A112468, A000045, A173398, A173402

%K nonn,easy

%O 1,5

%A _Mark Dols_, Feb 18 2010