login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173344
a(n+4) = a(n+3) - 2*a(n+2) - a(n+1) - a(n), starting with (0, 1, 0, -2).
1
0, 1, 0, -2, -3, 0, 8, 13, 0, -34, -55, 0, 144, 233, 0, -610, -987, 0, 2584, 4181, 0, -10946, -17711, 0, 46368, 75025, 0, -196418, -317811, 0, 832040, 1346269, 0, -3524578, -5702887, 0, 14930352, 24157817, 0, -63245986, -102334155, 0
OFFSET
0,4
COMMENTS
See A173343. A151889 gives a nonnegative version without zeros. (a(n)) = kibseq(X) with X = -0.25'i + 0.5'j + 0.5'k + 0.25'i + j' + 0.5k' - 0.25ii - 0.25'jj' - 0.25'kk' + 0.5'ij' + 0.5'ik' - 0.5'ji' -0.25'jk' + 0.25'kj' + 0.25'ee' (see Munafo link for definitions).
FORMULA
G.f.: x*(1-x)/(x^4+x^3+2*x^2-x+1).
a(n) = A275858(n-1)-A275858(n-2). - R. J. Mathar, Mar 23 2023
MATHEMATICA
CoefficientList[Series[(x-x^2)/(1-x+2 x^2+x^3+x^4), {x, 0, 50}], x] (* Harvey P. Dale, Apr 01 2011 *)
PROG
(PARI) concat(0, Vec((x-x^2)/(x^4+x^3+2*x^2-x+1) + O(x^50))) \\ Michel Marcus, Oct 29 2022
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Feb 16 2010
EXTENSIONS
Name edited by Michel Marcus, Oct 29 2022
STATUS
approved